More on the covering radius of BCH codes

نویسندگان

  • Françoise Levy-dit-Vehel
  • Simon Litsyn
چکیده

New lower bounds on the minimum length of terror correcting BCH codes with covering radius at most 2t are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the covering radius of some binary cyclic codes

We compute the covering radius of some families of binary cyclic codes. In particular, we compute the covering radius of cyclic codes with two zeros and minimum distance greater than 3. We compute the covering radius of some binary primitive BCH codes over F2f , where f = 7, 8.

متن کامل

New Linear Codes with Covering Radius 2 and Odd Basis

On the way of generalizing recent results by Cock and the second author, it is shown that when the basis q is odd, BCH codes can be lengthened to obtain new codes with covering radius R = 2. These constructions (together with a lengthening construction by the first author) give new infinite families of linear covering codes with codimension r = 2k + 1 (the case q = 3, r = 4k + 1 was considered ...

متن کامل

A family of ternary quasi-perfect BCH codes

In this paper we present a family of ternary quasi-perfect BCH codes. These codes are of minimum distance 5 and covering radius 3. The first member of this family is the ternary quadratic-residue code of length 13.

متن کامل

On the covering radius of small codes versus dual distance

Tietäväinen’s upper and lower bounds assert that for block-length-n linear codes with dual distance d, the covering radius R is at most n2 − ( 2 − o(1)) √ dn and typically at least n2 − Θ( √ dn log nd ). The gap between those bounds on R − n2 is an Θ( √ log nd ) factor related to the gap between the worst covering radius given d and the sphere-covering bound. Our focus in this paper is on the c...

متن کامل

New Set of Codes for the Maximum-Likelihood Decoding Problem

The maximum-likelihood decoding problem is known to be NP-hard for general linear and Reed-Solomon codes [1, 4]. In this paper, we introduce the notion of A-covered codes, that is, codes that can be decoded through a polynomial time algorithm A whose decoding bound is beyond the covering radius. For these codes, we show that the maximum-likelihood decoding problem is reachable in polynomial tim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 42  شماره 

صفحات  -

تاریخ انتشار 1996